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The geometrical theory of diffraction

I This talk is about the Geometrical Theory of Diffraction.

I It was invented in the 1940–50’s by Joe Keller, and has been
called ‘the greatest advance in optics since Newton’.

I Keller wrote a review paper on the subject (‘JOSA 1962’)
which has become a classic, and has been cited many
thousands of times.

I This paper, which besides the theory includes canonical
diagrams of various cones and special cases such as a disc, has
influenced innumerable applied mathematicians, physicists,
and engineers (including CJC).
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CJC contact with Joe Keller

I First occasion was the Woods Hole GFD programme.

I This could be true for several DAMTP fluid dynamicists and
members of the audience, judging by the WHOI photographs.
Joe Keller was a prominent member of this programme for
decades. (Beards came and went, including Joe’s.)

I Fellows and visiting scientists who would have met Joe there
include MEM, EJH, MREP, PFL, PHH, HEH, NOW, DG,
CPC, PAM, DV, PJD, and no doubt others.

I We had further contact during Joe’s extended visit to
DAMTP in early 1990’s, during which we often discussed ray
theory. He took a kindly interest in my work.

I I soon found that Joe remembered what I said, and on one
occasion he came back with a calculation relating to one of
my remarks. 3 / 14



Influence on aeroacoustics

I ‘Keller cones’ are now mainstream in aeroacoustic theory, and
appear (explicitly or implicitly) in the work of

I CJC, Hocter, Powles (duct diffraction, caustics, hyperbolic
umbilic catastrophe, leading-edge noise);

I NP, Kerschen, Graeme Keith, Raphael Assier, Lorna Ayton,
. . . (aeroengines, turbomachinery);

I Amiet, Glegg, Moreau, IDA, David Nigro,. . . (blade-vortex
interaction);

I Many others, e.g. aeroacoustics researchers at ISVR
(Southampton), Rolls-Royce (Derby), . . . .
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A classic paper

Let’s begin by looking at Keller’s 1962 paper (in reverence, rather
than to read today!). Keller had a distinctive writing style—short
clear sentences, with displayed equations almost invariably at the
end of sentence. This style is not so easy to imitate.
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The Keller cone of diffracted rays

Here is the famous diagram of the cone and disc.
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Caustics

Another diagram from JOSA 1962 shows neighbouring cones
intesecting at a caustic.
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Application to duct aeroacoustics (1994)

296 C .  J. Chapman 
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FIGURE 1. For caption see facing page. 
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Explanatory power of the ‘duct cones’

I In the forward arc: rays from two cones pass through an
observation point. This explains the multi-lobed interference
pattern in this region.

I In the rear arc: either one ray or no ray passes through an
observation point (because the duct wall is in the way). This
explains the single very broad lobe, up to a ‘cliff edge’ at an
angle determined by the vertex angle of the cone.

I Exactly one-quarter of the rays on a cone point back into the
duct, and constitute the reflected field. This is a striking
geometrical explanation of ‘where the reflected field comes
from’.

I The reflected field has an intricate caustic structure,
determined globally by a hyperbolic umbilic catastrophe.
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Hyperbolic umbilic in duct (1999) (cf. IDA, . . . 1994)

2532 C. J. Chapman
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Figure 3. For description see opposite.
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Hyperbolic umbilic in duct (1999)
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Figure 4. Regions determined by dominant triple balances of the ray equations for a single
family of rays: outer regions, a, b, c, d; wall regions, e, f; hyperbolic umbilic region g. (a)
Three-dimensional caustic surfaces in the duct, forming a ‘horn’ inside a ‘sleeve’; (b) meridional
section of (a), including extensions of the caustics above the duct wall.

figure 3c approaches points L on the adjacent smooth caustic. This feature underlies
the analysis of Grikurov (1980) and Kryukovskii et al . (1982), and is prominent in
the analysis below. Chains of caustics do not occur in those studies (e.g. Felsen &
Yee 1968) which assume that m� ka in the mode (2.1). The reason is that such an
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Scarfed duct (2004) (NP, G. Keith)

690 N. Peake 
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Figure 9. (a) Schematic of the model of the scarfed cylinder. (b) Asymptotic results for the 
integrated far-field power level, P(p), for the same duct mode as in figure 8. Scarfing angle L 
in degrees. What is shown in (b) is a polar plot of P(?p) against p, so that the horizontal and 
vertical coordinates are P(p) cos?p and P(p) sin ?, respectively. (Reproduced with permission 
from Keith (2000).) 

The effect of scarfing is to move the quiet zone and the caustic upwards towards 
the principal beam, which is then manifested in figure 9 by the upward distortion of 
the plots as L is increased. The position of the principal beam itself is determined by 
the duct mode (i.e. O9 0,,,,), and is not affected by the scarfing, but of course its 
amplitude increases above the horizontal and decreases below. Another interesting 
feature, not readily apparent in the figure, is that the radiated field is not left-right 
symmetric, since the incident mode has rotational symmetry but the scarfed edge 
does not. We have restricted attention here to the case 0,,, < (2lr)- 

L. For larger 
values of 0n,,, corresponding to duct modes which are closer to cut-off, the effect of 
scarfing can be expected to be even more significant, since then the lower portion of 
the edge is not insonified and the quiet zone below the horizontal is extended. 

5. Further topics 

We will now proceed to describe extensions to some of the topics already presented. 

Phil. Trans. R. Soc. Lond. A (2004) 
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Blade-vortex interaction (Amiet)

500 R. K. AMIET

§! is the x position of the propagating wavefront at the y spanwise station
and time t. This can readily be seen by noting that in (35) the switch from
one solution to the other occurs at x = | j . The time fj is defined to shift the
time origin so that events are measured from the time at which the acoustic
wave reaches the trailing edge. This is the same definition as used for the
case of the parallel gust, but the expression for tx must be generalized to

Ut^Ut-y tan a- c(M. - M2)/^2. (37)

The variable y is not included as one of the arguments of px in (35) since it
will always appear with t in the combination Ut —y tan a.

It is worthwhile to interpret equation (35) in physical terms. Figure 6
illustrates the possible cases. The gust on reaching the leading edge
produces an acoustic wave which propagates across the aerofoil surface. The
trace Mach number of the gust along the leading edge is M, = M cot a. If
the observer moves along the span with this Mach number, all time
variation is removed from the problem. This observer will see a relative
Mach number Mr = (M2 + Mfy = M/sin a. The vector M, points along the
gust wavefront as shown in the figure. The gust converts with the fluid,
while the acoustic wave propagates with velocity c0 relative to the fluid. The
angle dx of the acoustic wavefront will thus be greater than a, the gust
angle.

Two possible cases are shown in Fig. 6 for the acoustic wave. Case A
(9\<\n) results when Mm>M2 and case B {6^>\n) when Ma><M2. The

Gusts

M

FIG. 6. Gust interaction with the leading edge
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Recent very detailed work (2013) (Lorna Ayton)

Outer regions have ray structure described by Keller cones or discs.150 L. J. Ayton and N. Peake
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FIGURE 1. Asymptotic regions around the aerofoil; leading- and trailing-edge inner regions,
(i) and (v), scale as O(k−1), the width of the transition regions, (iv) and (vii), scales as
O(k−1/2), and the width of the Fresnel regions, (ii) and (vi), scales as O((kr)1/2). The outer
region (iii) is O(1) on the scale of the aerofoil chord. We solve for (i) in § 3, with (ii) found
specifically in §§ 3.1, 3.2, 3.4 and 3.5. We then solve for a leading-edge contribution to (iii) in
§ 4.1, and (iv) in § 4.2. We solve for the trailing-edge contribution to (iii) in § 5.1, solve for (v)
and (vi) in § 5.2, and finally for (vii) in § 5.3: (a) in (x, y) space; (b) in (φ, ψ) space.

where (R, θ) are the local polar coordinates centred on (0, 0) with R = kr.
Transforming equations (2.6) gives

∂2H
∂Φ2
+ ∂2H
∂Ψ 2
+ w2(1− 2β2

∞εq)H + (γ + 1)M4
∞

β2∞
εq
(
∂2H
∂Ψ 2
+ 2iδ

∂H
∂Φ
+ (w2 + δ2)H

)

− (γ + 1)M4
∞

β2∞
ε
∂q
∂Φ

(
∂H
∂Φ
− iδH

)
= 0, (3.2a)

subject to boundary condition of zero normal velocity on the aerofoil surfaces, ψ = 0,
i.e.

∂H
∂Ψ
+M2

∞ε
∂q
∂Ψ

H
∣∣∣∣
Ψ=0±
=−

[
1
k
∂hI

∂ψ
+M2

∞ε
∂q
∂Ψ

hI

]

Ψ=0±
, (3.2b)

where H is the unsteady potential in the inner region. This boundary condition tells us
that H = O(1). We now follow Tsai (1992) and Myers & Kerschen (1997) and expand
the inner unsteady potential in the form

H(Φ,Ψ )= H0 + εt′
√

k(H1 + H2 + H3)+ εα′eff

√
k(P1 + P2 + P3)+ O(ε). (3.3)
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