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The geometrical theory of diffraction

» This talk is about the Geometrical Theory of Diffraction.

> It was invented in the 1940-50's by Joe Keller, and has been
called ‘the greatest advance in optics since Newton'.

> Keller wrote a review paper on the subject (‘JOSA 1962')
which has become a classic, and has been cited many
thousands of times.

» This paper, which besides the theory includes canonical
diagrams of various cones and special cases such as a disc, has
influenced innumerable applied mathematicians, physicists,
and engineers (including CJC).
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CJC contact with Joe Keller

» First occasion was the Woods Hole GFD programme.

» This could be true for several DAMTP fluid dynamicists and
members of the audience, judging by the WHOI photographs.
Joe Keller was a prominent member of this programme for
decades. (Beards came and went, including Joe's.)

> Fellows and visiting scientists who would have met Joe there
include MEM, EJH, MREP, PFL, PHH, HEH, NOW, DG,
CPC, PAM, DV, PJD, and no doubt others.

> We had further contact during Joe's extended visit to
DAMTP in early 1990's, during which we often discussed ray
theory. He took a kindly interest in my work.

> | soon found that Joe remembered what | said, and on one
occasion he came back with a calculation relating to one of
my remarks. 3/14



Influence on aeroacoustics

> ‘Keller cones’ are now mainstream in aeroacoustic theory, and
appear (explicitly or implicitly) in the work of

» CJC, Hocter, Powles (duct diffraction, caustics, hyperbolic
umbilic catastrophe, leading-edge noise);

» NP, Kerschen, Graeme Keith, Raphael Assier, Lorna Ayton,
... (aeroengines, turbomachinery);

» Amiet, Glegg, Moreau, IDA, David Nigro,. .. (blade-vortex
interaction);

» Many others, e.g. aeroacoustics researchers at ISVR
(Southampton), Rolls-Royce (Derby), .. ..
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A classic paper

Let's begin by looking at Keller's 1962 paper (in reverence, rather
than to read today!). Keller had a distinctive writing style—short
clear sentences, with displayed equations almost invariably at the
end of sentence. This style is not so easy to imitate.
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Geometrical Theory of Diffraction®
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The geometrical theory of diffraction is an extension of geo-
metrical optics which accounts for diffraction. It introduces
diffracted rays in addition to the usual rays of geometrical optics.
These rays are produced by incident rays which hit edges, corners,
or vertices of boundary surfaces, or which graze such surfaces.
Various laws of diffraction, analogous to the laws of reflection and
refraction, are employed to characterize the diffracted rays. A
modified form of Fermat’s principle, equivalent to these laws, can
also be used. Diffracted wave fronts are defined, which can be
found by a Huygens wavelet construction. There is an associated
phase or eikonal function which satisfies the eikonal equation, In
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reference point. The amplitude varies in accordance with the
principle of conservation of energy in a narrow tube of rays. The
initial value of the field on a diffracted ray is determined from the
incident field with the aid of an appropriate diffraction coefficient.
These diffraction coefficients are determined from certain canonical
problems. They all vanish as the wavelength tends to zero. The
theory is applied to diffraction by an aperture in a thin screen
diffraction by a disk, etc., to illustrate it. Agreement is shown be-
tween the predictions of the theory and various other theoretical
analyses of some of these problems. Experimental confirmation of
the theory is also presented. The mathematical justification of th



Keller cone of diffracted rays

Here is the famous diagram of the cone and disc.
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Caustics

Another diagram from JOSA 1962 shows neighbouring cones
intesecting at a caustic.

I'16. 8. A pair of neigh-
boring incident rays hit-
ting a curved edge, and
some of the resulting
diffracted rays. The two
cones of diffracted rays
intersect at the caustic, Diffracted

_-which is at the distance Rays
L ny/from the edge along
The rays.

3
Shewdt b2 T

Incident
Rays

7/14



Application to duct aeroacoustics (1994)

C. J. Chapman
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Explanatory power of the ‘duct cones'’

> In the forward arc: rays from two cones pass through an
observation point. This explains the multi-lobed interference
pattern in this region.

> In the rear arc: either one ray or no ray passes through an
observation point (because the duct wall is in the way). This
explains the single very broad lobe, up to a ‘cliff edge’ at an
angle determined by the vertex angle of the cone.

» Exactly one-quarter of the rays on a cone point back into the
duct, and constitute the reflected field. This is a striking
geometrical explanation of ‘where the reflected field comes
from'.

» The reflected field has an intricate caustic structure,

determined globally by a hyperbolic umbilic catastrophe.
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Hyperbolic umbilic in duct (1999) (cf. IDA, ...
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Hyperbolic umbilic in duct (1999)
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Scarfed duct (2004) (NP, G. Keith)
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Blade-vortex interaction (Amiet)
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Recent very detailed work (2013) (Lorna Ayto

Outer regions have ray structure described by Keller cones or discs.
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